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It is shown that the Rényi entropy is as stable as the Tsallis entropy at least for the Abe-Lesche counter
examples.
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Abe �1� presented two counterexamples of instability of
the Rényi entropy and showed that the Tsallis entropy is
stable for these counterexamples. From the time of its pub-
lication, this work is often referred �see, e.g., �2,3�� as a
mortal verdict for the Rényi entropy. On the other hand, the
Rényi entropy is widely used now. Because of this, the main
points of Ref. �1� are to be revised carefully.

Abe calculated responses ��S�R�� and ��S�Ts�� to small
variations of initial model distributions over W states of a
system and then passed to the limit W→�, treating an am-
plitude � of the variation as a finite constant. As a result, he
found a loss of continuity of a response of the Rényi entropy
to the small perturbations. In my point of view, such a con-
clusion can be dismissed on two counts. First, Abe consid-
ered normalized values of ��S�R�� and ��S�Ts�� with different
W-dependent normalization factors, Smax

�R� and Smax
�Ts�, corre-

spondingly. Such normalization influenced their limiting
properties and, consequently, conclusions about their stabili-
ties. Second, continuity is to be checked with the use of the
opposite iterated limiting process: firstly, �→0 and then W
→�. Such an order corresponds to a traditional approach in
statistical physics where all properties are calculated firstly
for finite systems and the thermodynamic limit is performed
after all calculations �see, e.g., �4��. Below are modifications
of Abe’s results for such order of the limiting procedures.

For brevity’s sake, the first of Abe’s counterexamples
alone will be discussed here. It is especially important, be-
cause it refers to the range 0�q�1 the most, if not all, of
applications �5� of the Rényi entropy. The second counterex-
ample may be discussed in the same manner.

The examined small ���1� deformation of distribution
�p� over W states �W�1� for 0�q�1 is
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Using the well-known definitions of the Tsallis and Rényi
entropies �for kB=1�, we get
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where the last inequality is resulted from the fact that the
logarithm as a concave function is always less than its lin-
earized approximation. Thus, stability of the Rényi entropy
for the counterexample �1� is at least not lower than the
stability of the Tsallis entropy.

I may suppose that Abe paid no attention to this evident
inequality because he was developing Lesche-stability con-
ditions �6�, which are not for ��S�R�� and ��S�Ts��, but for

��� S�R�

Smax
�R� 	� and ���S�Ts�

Smax
�Ts�	� ,

where Smax
�R� =ln W and Smax

�Ts� = �W1−q−1� / �1−q�. Their ratio at
large W is
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→ W1−q. �4�

It is just this additional multiplier that ensures convergence
of the gain of the normalized Tsallis entropy S�Ts� /Smax

�Ts� in
contrast to S�R� /Smax

�R� .
It would be more reasonable to normalize both entropies

by the common denominator, say, sup�Smax
�R� ,Smax

�Ts�� or number
of states W. In the latter case, ��S� /W is the entropy gain per
a state. It is evident from the above equations that the gain
per a state for each of the discussed entropies tends to zero
when W→�.

But the most essential point is that we should only deal
with entropies as such, because their normalized versions
S�R� /Smax

�R� and S�Ts� /Smax
�Ts� are irrelevant both to thermostatistics

and information theory.
As for stability of the Rényi and Tsallis entropies per se,

their gains for ��1 and W�1 become
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irrespective of the interrelation between � and W.
Because both entropies are unbounded functionals, there*Electronic address: abas@idg.chph.ras.ru
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is no double limit ��→0, W→�� of their gain as a function
of � and W, but there is a repeated limit ��→0 and then W
→�� and it is equal to zero. Indeed, both �S become infini-
tesimal for any finite W when

�/2 � �W − 1�−�1−q�/q. �7�

In terms of 
-�, the continuity condition is formulated in
the next form: For every given 
�0 we are to find such �

that both �S become less 
 if �i�pi− pi����. Here it means
that

� � 2��1 − q�Wq−1
�1/q, 0 � q � 1. �8�

Dependence of this condition on W testifies that both S�R� and
S�Ts� are not uniformly convergent when W→�.

At any case there are no advantages of the Tsallis entropy
over Rényi entropy for its stability in a sense of continuity
relative to small perturbation of the probability distribution.
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